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ABSTRACT

The far-wing line shape theory within the binary collision and quasistatic

framework has been developed using the coordinate representation. Within this formalism,

the main computational task is the evaluation of multidimensional integrals whose

variables are the orientational angles needed to specify the initial and final positions of the

system during transition processes. Using standard methods, one is able to evaluate the

?-dimensional integrations required for linear molecular systems, or the 7-dimensional

integrations for more complicated asymmetric-top (or symmetric-top) molecular systems

whose interaction potential contains cyclic coordinates. In order to obviate this latter

restriction on the form of the interaction potential, a Monte Carlo method is used to

evaluate the 9--dimensional integrations required for systems consisting of one

asymmetric-top (or symmetric-top) and one linear molecule, such as H20 - N r

Combined with techniques developed previously to deal with sophisticated potential

models, one is able to implement realistic potentials for these systems and derive accurate,

converged results for the far-wing line shapes and the corresponding absorption

coefficients. Conversely, comparison of the far-wing absorption with experimental data

can serve as a sensitive diagnostic tool in order to obtain detailed information on the

short-range anisotropic dependence of interaction potentials.
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I. INTRODUCTION

In two recentpapers,1,2 we reported progress made to overcome the two main

uncertainties remaining in the calculation of accurate far-wing line shapes. In the first

paper, 1 we introduced the idea of formulating the theory using the coordinate

representation instead of the state representation. The motivation resulted from efforts to

calculate converged line shapes for complicated molecular systems. In previous

calculations, 3'4 the states of the two interacting molecules were chosen as the complete set

of basis functions in Hilbert space. These basis functions are characterized by well defined

values of the energy, but not locations in space. As a result, one had to diagona]ize

anisotropic potential matrices because the latter are off-_agonal in this representation.

However, it is well known that to diagonalize a matrix exhausts computer resources very

quickly as the size of the matrix increases. Despite attempts to arrange the matrix in

block-diagonal form which reduces the callculational cost significantly, the goal of

obtaining converged results within reasonable computer CPU and memory constraints

could only be achieved for the simplest systems such as CO 2 - Ar. By contrast, using the

coordinate representation whose basis functions are characterized by the definite locations

in space but not values of the energy, the diagonalization of the anisotropic potential

matrix becomes unnecessary and the main computational task is transformed to the

carrying out of multidimensional integrations over the continuous variables needed to

specify the initial and final orientations of the two interacting molecules. For systems

consisting of two linear molecules, or one linear and one more complicated

(asymmetric-top or symmetric-top) molecule, or two complicated ones, the dimensionality

of the integrations is seven, nine, and eleven, respectively. Then, as many states as desired

can be included in the calculations and the convergence criterion is transformed to the

feasibility of calculating these integrations within reasonable CPU time. In comparison

with the previous requirement, 3'4 this new criterion is much less stringent. We applied this

formalism for linear molecular systems (CO 2 - CO2 and CO 2 - N_) and showed that one
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couldevaluatethe 7-dimensional integrations using standard methods and obtained

converged results with modest CPU time. 1

The other uncertainty is related to forms of the interaction potential that could

incorporated in the theory. It is well known that the theoretical line shape depends

sensitively on the potential, especially on its short-range part. However, in previous

formulations because of the necessity of finding roots of the radial part, the potential

models that could be treated were limited to those having simple forms and one would not

expect them to model the detailed interactions well. Therefore, an extension to more

sophisticated potentials was necessary. In order to achieve this, we developed an

interpolation procedure in which one does not have to find the roots directly; this advance

enabled us to implement more realistic interaction potentials. The details of this technique

were given in the second paper, 2 and combining this improvement with the coordinate

representation, allowed us to calculate converged results for far-wing line shapes of linear

molecular systems using realistic interaction potentials. More specifically, in a related

paper, 5 we showed that using a sophisticated potential, one could calculate absorption

coefficients that were in good agreement with experimental data over a range of

temperatures for CO 2 - CO r 5

However, if we extend our method to other complicated cases (e.g., H20 - N 2 or

H20 - H20), we found that the calculation of the higher-dimensional integrations is not

feasible using standard methods. This implies that for these systems using standard

methods, one has somehow to reduce the dimensionality of integrations required in

numerical evaluations or to explore alternative methods to evaluate the

higher-dimensional integrals.

In the second paper, 2 we presented progress made according to the first procedure.

We found that for cases where the interaction potential considered contains cyclic

coordinates, the integration over them can be carried out analytically, with the

concomitant reduction of the dimensionality of the remaining numerical integrations. The



later can then be carried out using standard methods. Because the leading long-range

anisotropic interaction contains such cyclic coordinates, one can adopt a short-range

interaction having the same symmetry. In comparison with results computed with less

sophisticated potentials for the same systems, the latter results are in better agreement

with experiment.

Ia the present paper, we report results made by an alternative calculation of the

multidimensional integrations using Monte Carlo methods. As a first step, we focus on

systems containing one linear molecule. We show that by using the Monte Carlo

technique, one can calculate the required 0--dimensional integrations and obtain converged

results for the far-wing line shape using computational resources comparable to those

needed to compute the ?--dimensional integrations using standard methods. Given the fact

that we can consider potentials without cyclic coordinates, the advantages of the present

method are obvious.

The organization of the present paper is as follows: In Sect. II we give a summary of

the general formalism. Starting in Sect. II A, we outline the relation between the spectral

density, the Fourier transform of the dipole moment autocorrelation function, and the

band-averaged line shape. In Sect. II B, we discuss the density matrix expressed in the

coordinate representation that is central to the calculation of the far-wing line shape; we

derive explicit expressions applicable for an asymmetric-top molecule and calculate the

density matrix of H20 for several different temperatures. We present representative

two-dimensional plots in order to illustrate the main contour features. In Sect. II C, we

discuss in detail the interaction potential used in the present calculation without the

restriction of cyclic coordinates. This consists of the long-range dipole--quadrupole

interaction varying as r"4, where r is the separation between centers of mass of the

interacting molecules, an attractive dispersion term varying as r "6 containing an adjustable

strength, and a short-range exponential site--site repulsive interaction containing four

adjustable parameters. In Sect. II D, we discuss the Monte Carlo calculation of the



9-dimensional integrations and the results obtained. In the final Sect., we present a brief

discussion of these results and the conclusions drawn from the present study, including

reasons why previous interaction potentials utilized for the calculation of the Lorentzian

half-widths e'7 are not suitable for the far-wing calculation. In fact, the accurate

representation of the far-wing line shape places severe restrictions on the short-range

interaction and can be used to discriminate between various potential models giving

comparable results for other calculated quantities.

II. THE GENERAL FORMALISM

A. The spectral density and the band-average line shape function

As shown in a previous study, 4 based on the binary collision approximation valid in

the low--density limit, one is able to derive an expression for the spectral density F(w) as a

summation of contributions from individual lines with the common line shape (i.e., the

band-average line shape) denoted by _(a_):

1

F(w)-_ _ e--_(w--wij)/2kT{( w _I wiJ)2 _(w-- wij)

Wij > o

1 _,(_+ _ij)};i[Pij [ n
+ (w + wij) 2 , (i)

where the indices i or j represent all the quantum numbers necessary to specify the energy

levels of the absorber molecule, wij are the resonance frequencies, gi are the diagonal

elements of the density matrix, and #ij are the reduced dipole matrix elements. Within the

quasistatic approximation valid for the far-wing line shape, one can calculate the

band-average line shape _'(w) from knowledge of the interaction between two molecules.

By choosing the Z axis of the space-fixed frame along the separation between the two

molecules, the interaction V(r, fla, fib) depends on the orientations of the molecules

represented by fls and fib, respectively, and on r. Within the quasistatic approximation,

the translational motion is treated classically while the internal degrees of freedom are

treated quantum mechanically. In Hilbert space associated with the internal degrees, one
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denotesthe eigenvalues and eigenvectors of V(r, fla, fib) by G_ and [(>, respectively; thus

V(r, n,,,nb)l¢> = c¢Cr)lC>, (2)

where r appears in the eigenvalues G¢(r) as a parameter. Then, one is able to derive an

explicit expression for the band-average line shape Z(_):

l(W) ----4_va nb u,a _ I<Cl

, rc2 e- [G_(rc)+ G_(rc)]/2kT- Vi_oCrc)/kT / _ pil#ij ,
ij

where n b is the number density of the bath molecules, G_(r) denotes _-/_G_(r) - G_(r)],

and rc are roots of the equation

G_(rc) - G_(rc) - w. (4)

In order to carry out numerical calculations of _(_) from Eq. (4), one first has to

find the eigenvectors and eigenvalues of the potential and then sum the contributions

resulting from all possible combinations of these eigenvectors representing the initial and

final positions of the system during the transition processes. It has been shown that if the

states of the system are chosen as the complete set of basis hnctions in Hilbert space, one

is unable to obtain converged results except for the simplest systems such as CO 2 - Ar

because a diagonalization procedure required exhausts computer resources quickly. In

order to overcome this difficulty, a new method was developed recently in which the

eigenfunctions of the orientations of the system are chosen as the complete set in Hilbert

space.1 From the theoretical point of view, these two methods are equivalent since they

differ only by the choice of representation, but in practical calculations, the latter has a big

advantage over the former. In hct, with the new method the diagonMization procedure is

unnecessary and the main computational task is transformed to the carrying out of

multidimensional integrations over the continuous orientational variables. With this

formulation, we have shown that using standard methods, one is able to calculate

converged results for systems consisting of two linear molecules in which the dimensionality

of the integrations is seven. 1,5 For systems involving more complicated molecules, such as



H20 - N 2 and H20 - H20 , the dimensionality of the integrations becomes nine and eleven,

respectively, since more angular variables are needed to specify their orientations. Usually,

standard methods are not applicable in order to evaluate such high multidimensional

integrations. Recently, we have shown that in cases where the interaction potentials

contain cyclic coordinates, one can carry out the integrations of the density matrix over

these coordinates analytically first and obtaiv the "averaged" density matrix. _ Then, with

the "averaged" density matrix, one is able to reduce the dimensionality of the remaining

integrations for both H20 - N 2 and H20 - H20 to seven, the same as those for linear

molecular systems. As a result, one can obtain converged results using the standard

methods. Although the leading terms of the long-range interactions of H20 - N 2 and H20 -

H20 do have such cyclic coordinates, to require the other parts, especially the short-range

part which is not known well at present, to have the same symmetry is a simplifying

assumption which one would like to avoid.

It has been known for a long time that Monte Carlo methods can be applied for

evaluating high multidimensional integrations. Given the fact that a calculated line shape

ranges from line center to more than 1000 cm "1 away and requires a lot of points to depict

well, we note that the complexity associated with the line shape calculation is greater than

the evaluation of a few 9- or ll--<limensional integrations. As a first attempt, without

introducing any assumptions on the symmetry of the H20 - N_ interaction, we use the

Monte Carlo method to directly evaluate the 9--<limensional integrations and calculate the

line shape. By doing so, instead of the "averaged" density matrix of H20 , the complete

density matrix has to be used.

B. The density matrix in the coordinate representation

Within the band--average approximation, we have shown that one can replace

I< _[ P_r_#177> [2 by I< _] PP_"b117:> [2 in the expression for the band-average line shape. 1

In later derivations, formulas without the subscripts a or b attached are understood to be



applicablefor both the absorberand bath molecules.

In the following derivations, we adopt the simplifying notation that tic, is used to

represent the orientation of the molecule of interest. For N2, fie corresponds to 0¢ and _o¢.

Alternatively, for the asymmetric-top H20 molecule, it corresponds to a_, ]_, and "y_.

Then, expressing I_> as

It>= 16(aa- aa¢)_(ab-abe)>, (S)

one isable to write I<(1 PV_-'bl_/>]2as the product oftwo factors

I<elP,r__-_bl_>I_= 1<6(na-QaOIP,/'_I_(na- l"la.n)> I n

I<_(nb- nbc.)Ip..r_-_bI_(nb- r_)> I_. (S)

The explicit expression for each factor depends on which class the molecule of interest

belongs to. For linear molecules, we have shown that 1

l<6(n- _)14_I 6Ca- a_)>l_= _ A, P, (cosec_I ), (7)
L

where PL(COsO¢ ¢_)) are Legendre polynomials with L = 0, 1, 2, -.., and O¢ ¢_) is the angle

between tic. and fl_, viz.

cosO¢ _ = cosSc,cosS_ + sin0_sinS_ cos(_oC,-_0_i). (8)

The coefficientsA L are given by

1

A L = _ _.(2j+ 1)(2j'+ 1) _ e [E(j)+E(j')]/2kTC2(j j,L, 0 0 0), (9)
°.'

JJ

where Q isthe partitionfunction,g. isthe nuclear spin degeneracy factor,E(j) are the
J

energiesof the state corresponding to the angular quantum number j,and C(j j'L, 0 0 0) is

a Clebsch-Gordan coefficient.The absolute square of the density matrix for N2 calculated

from Eqs. (7) and (9) at T = 296, 338, and 430 K with a cut---offJinx = 80 are shown in

Fig. 1. As shown in the figure,there are two sharp and uneven peaks located around O(¢_)

= 0 and 180 degrees,respectively,and the magnitude decreases very fastas O¢ ¢_ differs

from these values. By comparing the profilesobtained from differenttemperatures, itis

obvious that the higher the temperature, the higher and narrower the peaks become. The

more detaileddiscussionswere reported previously.
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For a symmetric-top molecule whose wavefunctions are given by s

Ijkm> = (- 1) m-k (_-_)½ DJ_m _k(C_, fl, ,),), (10)

where DJ,k (oz, 8, _') (= e'-imc_dJ,k(fl)e -ikT) is the rotational matrix, we have shown _

that

1<6(o- ndl_l,_Cn- _)>1 _=_. ALxDL,Kca, c.n,,fl,_.n,, 7,_,). (11)

LK

In Eq. (11), a¢ _n), 8¢ _nl, and 7¢_,,,q)are the three Euler angles used to represent a rotation

resulting from two successive rotations, i.e.,

R(_,, _c_,_,)= R"(% _,_)R(% _,_), (12)

the summation index L = 0, I,2, ... and the index K = -L, -L + I, ..., L - I,L,

respectively, and the coefficients ALE are given by

1
=__ _(2j+ I)(2j'+ I)ALK 4gkgk_K

jj'k

,, e-" [E(j,k)+E(j',k-K)]/2kbT C2(j j, L, k K-k K), (13)

where E(j,k) are the energies of the state labeled by the quantum numbers j and k, and gk

is its nuclear spin degeneracy factor. We note that when the quantum number k and the

Boltzman constant k appear in same expressions, a subscript b is attached to the latter.

Similar expressions can also be derived for the asymmetric-top molecule whose

wavefunctions are given in terms of an expansion of symmetric-top wavefunctions, 9

Ijrm>= XU jkr [jkm>. (14)

k

In this case, we have shown n that

L L
1<6(n-ndl4_16Cn-n0>l _= Y._ axK,I)E,r(_,,_,, "r_l, (151

L KK_

where a¢ _, 8¢ _1, and 7¢ _> are defined by Eq. (12) and the summation index L = 0, 1,

2, --., and both indices K and K' run from - L to L. In the above expression, the

L
coefficients AKK, are given by

L 1 + 1)(2j' 1)_/grgr, eAKK, = _ _ _ (_ 1)K K'(2 j + + [E(j,r)+ECj',r')]/2kbT

jj' 1"_"
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= _ (- I) k + k'uJ J uJ: , U j' j' j' k' K'-k'krUk'r k-K r' k-Kr'C(J L, kK-kK) C(j L, K'),(16)

kk'

where E(j,r) are the energies of the state, and gr is its nuclear spin degeneracy factor. By

comparing Eqs. (7), (11), and (15), i.e., the expressions for the factors associated with the

linear, the symmetric-top and asymmetric-top molecules, respectively, it is obvious that

the more complex the molecule, the more complex the expression becomes. In addition, for

the linear molecule, the absolute square of the density matrix represents a one--dimensional

distribution over the angle O c_. Meanwhile, for the symmetric-top and asymmetric-top

molecules, it can be understood as a three---dimensional distribution over the Euler angles

o(_), 8_ _), and 7(_). For later convenience, we use the simple notation F(o, 8, 7) to

represent it. We note that the normalization requirement is given by

f2_" f_" 12o_F(_, 1 (17)8, 7) sin8 do d8 d7 = _r-_.
0 0

It has been shown 1'_ that one can easily include as many states as desired in

numerical calculations for the density matrix of the linear molecules CO_ and N 2 and also

for the "averaged" density matrix of H20. In the present study, we note that one can still

include all the states available in the calculations with affordable CPU costs. Although in

order to calculate the density matrix for complex molecules there are many more individual

L
coefficients ALg and AgK, needed, and their expressions become more complicated as shown

by Eqs. (13) and (16), respectively, the calculation of these coefficients is straightforward.

In addition, one does not need to calculate all of them since some of them are identical and

others are zero. For the H20 molecule of interest in the present study, it turns out that

J L

due to the symmetry of Ukr all the coefficients Agg, are zero unless their indices K and K'

have the same evenness or oddness. In addition, for the non-zero coefficients the following

symmetries are valid:

L L ._ A L
AKK' "- Ag'K -K--K' " (18)

As a result, if Jmax is the highest angular quantum number of the states included in the

L for L = 0, 1, 2, -" L=a x wherecalculation, one only needs to calculate the coefficients Ag K,
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Lma x=2jmax ,forK=0,1,2,...L,andforK'=-K,-K+2,...,K-2,K. The

number of distinctcoefficientsisequal to (L,,ax+ 1)[1+ Lmax(Lmx+ 5)/6]. As an

example, for the pure rotationalband of H20, the highest angular quantum number of the

initialstateslistedin the HITRAN 92 database '°is23. Ifone includes allthese states,

there are 18424 coefficientsneeded to be evaluated. In comparison with the calculationof

the "averaged" density matrix in which there are only 47 (= 2jinx+ 1) coefficientsA L

needed, of course,thisrequiresa lotof more computation requiringseveraldozen hours to

complete using a workstation. But, fortunately,fora specifiedtemperature itneeds to be

done only once.

L
When allthese Axx ,are available,one can easilyobtain the density matrix given in

the coordinativerepresentationsincethe the expression for the rotationalmatrix isknown.

The explicitexpression for F(a, 8, 7) used in the numerical calculationsisgiven by

LKK'

where eXK' = 1 for K = K' = 0; _KK' _- 2 for IK'l - K; cxx , = 4 for IK'[ _ K, and the

ranges of the indices L, K, and K' are from 0 to Lmx, from 0 to L, and from - K, - K + 2,

• .., K - 2, K, respectively. We note that in this expression, the Euler angles a and 7

appear not by themselves, but in the combinations (a + 7)/2 and (a- 7)/2. In addition,

(a + '),)/2 is associated with K + K', and (a - 7)/2 is associated with K - K'. More

discussion about this point is given later.

It has been shown _ that the profile of the "averaged" density matrix of H20 which is

a one--dimensional distribution to some extent looks like a 6 function. One expects that

the profile of the density matrix of H20 itself which is a three--dimension_l distribution

exhibits more detailed features. Of course, it is impossible to plot F(a, 8, 7) in one figure

and one has to present it using a series of two-dimensional contours with one argument

fixed.

With Eq. (19), we calculate several two-dimensional distributions F(a, 80, 7) over
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the Euler anglesa and 7 at T = 296 K obtained with 80 = 0, 20, 40, and 60 degrees,

respectively, and present their corresponding contour plots in Fig. 2. From this figure, one

can draw two conclusions. By comparing these plots, one can easily find that the

magnitudes of the density matrix decrease very fast as 80 increases. This is fully expected

since the profile of the "averaged" density matrix known from a previous study exhibits

this behavior. In fact, by carrying out a two--dimensional integration of the density matrix

over the Euler angles a and ?, one expects to obtain a one-dimensional distribution of the

density matrix over the remaining angle/_. This results in exactly the "averaged" density

matrix as easily shown by

2_" f2_ L

0 J0 F(a, 8, 7) da d7 = 4_2 _.A00 D_,0(0,/_,O)

L

= y,A L PLCCOs_) • (20)

L

In deriving the last step of Eq. (20), the fact that 47r2A_0 = A L has been used and the

explicit expression for A L was given in our previous study. _ Secondly, by analyzing each of

these contours, it is obvious that these FCa ,/_0, 7) exhibit symmetry with respect to the

axes Ca + 7)/2 and Ca - 7)/2. It is interesting to note that if one introduces the two

arguments u _ (a + 7)/2 and v =-(a - 7)/2,the magnitudes of F(a, 80, 7) depend very

sensitivelyon the former, but are insensitiveto the latter,especiallyfor the cases where/_0

issmall. This implies that instead of a and 7,itisbetterto choose u and v as the two

arguments. The same conclusion isalsosuggested by Eq. C19) as mentioned above. We

use the symbol G(_, u, v) to representthe distributionof the density matrix over 8, u, and

v. We note that the values of u and v vary in a lozenge---shapedarea, the former's

maximum and minimum equal to 0 and 2_r,respectively,and the latter'sare -_r and _r,

respectively.

Since G(_, u, v) has one insensitiveargument v, itsprofilecan be well represented

by one contour plotof U(_, u) resultingfrom averaging over v. Due to the symmetry _'(/_,
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2_ - u) - _(fl, u), one can calculate values of _'(fl, u) only in the range of v from 0 to _.

In this case, ]_(fl, u) is defined by

I n G(fl, u, v) dv.
1

u)= -u (21)

With Eq. (19), one is able to carry out the above integration analytically and derive an

explicit expression for _(fl, u) but this is not presented here. We calculated _(fl, u) for T

= 296 K, 338 K, and 430 K and present the results obtained in Figs. 3 - 5, respectively. In

order to visualize the complete profiles of the density matrix, one can imagine that except

for small deviations which can be ignored in small fl areas, the profiles shown in Figs. 3 - 5

extend along another dimension, i.e., the v axis which is perpendicular to the fl - u plane

and is missing in these figures. Furthermore, the range of the extension along the v axis is

equal to I-u, u], which varies from the minimum 0 at u = 0 to the maximum 2_ at u = _.

From these figures, it is obvious that the density matrix of H20 exhibits more structures

than that shown by the "averaged" density matrix. Along the u axis, there are 5 sharp

peaks located at (0, 0), (0, 7r/2), (0, _), (0, 3_r/2) and (0, 2_r), respectively. The largest is

the one at (0, _). This conclusion results not only from its apparent size in the plots, but

also from the fact that it extends along the v axis more than the others. With respect to

its distributions along the fl axis, in general, the density matrix of H20 decreases very fast

as fl increases which has been shown previously for the "averaged" density matrix. On the

other hand, by comparing the results obtained from different temperatures, one concludes

that as the temperature increases, the peaks become sharper, i.e., their heights are higher

and their widths are narrower. We note that in the contour plot obtained at T = 430 K,

the lowest scale is reduced from 1.0 = 10 "n used for T = 296 K and 338 K to 1.0 = 10 "1°.

Otherwise, calculation errors add some meaningless structures in areas where the

magnitudes are below this limit; this indicates a general trend that for higher temperatures

more states with higher j values have to be added in the calculations.

In order to carry out line shape calculations, one can calculate G(fl, u, v) and store
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the results in files. The areas with high _ values can be excluded from consideration. One

can further reduce the ranges of u and v due to symmetry considerations. One has to

choose high resolutions for p and u, but a lower one for v. The details are not presented

here for brevity.

C. More general potential models

In our previous study _, we have developed techniques to deal with complicated

interaction potential models, specifically those for which their dependence on r and on fa

and fb interweave, and the dependence on r takes a complicated form. For example, we

can adopt a flexible site--site model,

V,,(r,fa, fb)= X Vij(rij), (22)
iea jeb

in modeling the short-range part of the anisotropic interaction. In this site---site model,

the indices i and j run over force centers of the absorber molecule a and the perturber b,

respectively, rij is the distance between the center i and the center j, and Vij(rij ) represent

individual interactions between them. The flexibility of the site--site model can be

achieved by choosing different numbers of the centers, different locations of the centers,

and different forms for Vii. With respect to the long-range part of the anisotropic

interaction, one usually adopts the leading term of the multipole expansion which, in the

present case, is the dipole---quadrupole interaction given by

Vdq(r, fa, fib) "- _ [COSfla (3 COS20b- 1) - 2 sin_a sin0 b COS_ b COS(Ct a -- _o)], (23)

where # is the dipole moment of H_O lying along the Z axis of the body-fixed frame, and Q

is the quadrupole moment of N 2.

It has been shown that in order to make multidimensional integrations tractable

with standard methods, we had to limit potential models to those containing cyclic

coordinates. The dipole---quadrupole interaction of H20 - N 2 has a cyclic coordinate ")'a"

By assuming that in the site-site model the force centers of H20 are located along the Z
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axis of the body-fixed frame, Vsr(r , f/a, f/b) has the same symmetry as Vdq(r , f/a, f/b)"

With this restriction, one can introduce the "averaged n density matrix and reduce the

original 9--dimensional integrations to 7-dimensional ones. Then, standard methods

become applicable to carry out the integrations.

Since at present one does not know the short-range anisotropic interaction of HaO -

N 2 well, it is desirable to consider more general models. Therefore, we adopt a site-site

model having three force centers for H20: two located at the two H atoms and one at the O

atom. With respect to the N 2 molecule, we assume that there are two force centers and

they are located on the two N atoms, the same as we did previously. Concerning the form

of Vij(rij), we assume that Vij(rij ) -- Aij e- rij/PiJ to represent the repulsive interaction

between force centers where Aij and Pij are adjustable parameters. In order to take into

account attractive dispersion interaction, we include an isotropic term given by -B/r °

where B is an adjustable parameter. As a result, the potential V(r, f/a, f/b) considered is

given by

V(r, f/a,f/b)"- _ _ Aij e-riJ/PiJ + Vdq(r, f/a,f/b)--r--z,B (24)

iea jeb

and itcontains 5 adjustable parameters: AH_ ,PHi' Ao_' Po_ and B. The dipolemoment of

H20 and the quadrupole moment of N 2 are well known and the values used in the present

calculationsare 1.8546 D and 1.40D A, respectively.Meanwhile, the bond angle of H20 is

104.52 degrees and the separation between the O atom and the H atom is0.9572 A; 11the

separation of two N atoms of the N 2molecule is1.10 _. 12 By making these choices,V(r,

f/a,f/b)depends on all5 angular variablesused to specifythe orientationsof H20 - N 2.

This implies that V(r, f/a,f/b)does not contain any cycliccoordinates and itisnecessary

to evaluate the 9-dimensional integration.

D. A Monte Carlo calculation of the line shapes

By choosing the eigenfunctions of the orientations of H20 - N 2 as the complete set
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of basis functions, the summation over ( and r/in Eq. (3) becomes 0-dimensional

integrations over fla_, %Q, 0b_, _0b_, _a_, fla_, _/a_, 0b_, and _Ob_in which the first four

(including aa_ -- 0) specify the initial orientations of H20 - N 2 and the last five specify the

final ones. We note that due to the rotational symmetry of the whole system, one can

always assume aa_= 0.

It hasbeenknownforyearsthat the MonteCarlomethodis an alternativewayto

_culate multidimensional integrations, especially in cases where their dimensionalities are

sohighthat standardsmethodsdonot yield reliableresults. Werely on analgorithm

called VEGAS which is widely used in elementary particle physics. 13 As a Monte Carlo

algorithm, VEGAS is primarily based on important sampling, but also does some stratified

sampling. The important samplingis crucial in the presentcalculations since the

distributionsoftheintegrandoverits 9integrationvariablesare extremelynonuniform.In

fact, as shown by Eq. (3) it contains the factor [ <([ g_/_--b#[ _>[2 which is the product of

the density matrix of H20 and the density matrix of N 2. As shown by Figs. 1 - 5, these

density matrices are highly concentrated in narrow areas. As a result, one must use the

important sampling to achieve variance reduction in Monte Carlo computations. This can

easily be done by setting input flags in VEGAS. With VEGAS, the subroutine vegas

performs m (the flag 1) statistically independent evaluations of the desired integral, each

with N (the flag 2) integrand evaluations. While statistically independent, these iterations

do assist each other, since each one is used to refine the sampling grid for the next one.

The results of all integrations are combined into a single best answer and its estimated

error. Interested readers can find its basic features in the book of Numerical Recipes in

Fortran 77. is

We have made some modifications necessary in VEGAS resulting from special

requirements in the line shape calculation. As mentioned previously, the complexity

associated with the line shape calculations is far beyond the need to evaluate a few values

of the 9-dimensional integrations In practice, since the line shape is a function of
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frequency, one has to use a lot of points to depict it well. Therefore, the number of the

9-dimensional integrations to be evaluated simultaneously by the algorithm is around 100

or so.

In order to verify the applicability of Monte Carlo algorithm in the line shape

calculation, we have made several tests in which the potentials considered contain cyclic

coordinates and 9-dimensional integrations can be reduced to 7-dimensional ones. In

these cases, we use two methods to calculate the line shapes. First, by introducing the

"averaged" density matrix and using standard methods, we carried out the reduced

7---dimensional integrations and obtained converged results. On the other hand, we used

the Monte Carlo algorithm directly to evaluate 9--dimensional integrations. It turns out

that in general, by taking around 106 or 107 random selections of a set of the 9

orientational variables, the Monte Carlo algorithm can produce line shapes without

significant differences from those obtained before. _ The CPU times required are modest on

a workstation.

Then we applied the Monte Carlo method to cases where the potentials do not

contain any cyclic coordinates. In order to verify the applicability, one can compare results

obtained from the Monte Carlo algorithm with different random selection numbers and

check whether results have converged. We present in Fig. 6 two line shapes obtained at T

= 296 K with the same potential parameters but with different numbers of the random

selections. The first one is obtained from 3.2 x 106 random evaluations of the integrand,

i.e., a call of VEGAS with m = 3 and N = 4 x 105 immediately followed by another call

with m = 1 and N = 2 x 106. The second is from 9.2 x 106 random evaluations using a call

of VEGAS with m = 3 and N = 4 _ 105 immediately followed by another call with m = 1

and N = 8 _ 106. From Fig. 6, it is obvious that there are only negligible differences

between these two line shapes. Therefore, one can conclude that using approximately 107

random selections of the set of variables, the calculated line shapes are converged. It is

interesting to note that the same number of terms is required to evaluate 7--dimensional
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integrations usingstandardmethods. This implies that with comparablecomputer

resources(severalhoursCPU time at a workstation) required previously for 7-dimeusional

integrations, the Monte Carl algorithm enables us to evaluate 9--dimensional ones.

After making convergence tests, we know how many random evaluations are needed

in order to obtain reliable results. Thus the only difficulty left in the line shape

calculations, and consequently in the absorption coefficient calculations, is the choice of a

realistic potential model. We adopt the potential form given by (24) and begin to search a

set of potential parameters that enables us to get a good fit to the experimental results of

Burch et al.14 at T = 296 K. We find that by adopting AH_/k = 1.2 x 106 K, PH_ = 0.28

_, AoN/k = 1.5 x 108 K, PO_ = 0.26 ._, and B/k = 1.38 _ 106 K, one is able to obtain

satisfactory results. In addition, we note that because the short-range model has an

isotropic contribution, which when combined with the isotropic dispersion interaction

-B/r 6, gives "effective" Lennard-Jones parameters of _reff = 3.57 ._, and eeff/k = 207 K, in

reasonable agreement with other estimates. Based on this potential model, we calculated

the the band-averaged line shapes of H20 - N 2 for several temperatures T = 296 K, 338 K,

and 430 K. The line shapes at T = 296 K plotted in Fig. 6 are from these calculated

results. The line shapes at T = 338 K and 430 K, together with that at T = 296 K,

obtained from a call of VEGAS with m = 3 and N = 4 _ 105 immediately followed by

another call with m = 1 and N = 4 _ 108, are presented in Fig. 7. The N2-broadened

absorption coefficients at T = 296 K in the spectral region 300 - 1100 cm -1 based on

HITKAN 92 data are plotted in Fig. 8, together with the experimental results of Burch et

al.14 Similarly, the calculated absorption at T = 430 K and comparison with experimental

data '4 are presented in Fig. 9. As shown by these figures, the agreement with the

laboratory values is reasonably good.

III. DISCUSSIONS AND CONCLUSIONS

In summary, there are three main theoretical improvements made recently in line
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shape calculations. The first is that instead of the representation constructed from the

states of the system, one uses the coordinate representation enabling one to avoid

convergence errors resulting from the truncation of states included in calculations, and the

failure to maintain the commutativity of the dipole moment and the anisotropic potential.

We note that in practical calculations, the ability to overcome the convergence problem is

crucial for the accurate calculation of the cc_rresponding far-wing line shape.

The second improvement is the interpolation procedure introduced which obviates

the need to find the roots in Eq. (4) and enables one to handle complicated potential forms.

Given the fact that the calculated far-wing line shapes depend sensitively on the potential,

especially on its short-range anisotropic part, and that the latter can not be represented

well by simple models consisting of the Lennard-Jones isotropic potential and the leading

term of the multipole expansion, the ability to incorporate more sophisticated potential

models is crucial for realistic calculations. For linear molecular systems, it has been shown

that the main computational task is to carry out 7-dimensional integrations and the later

can be evaluated using standard methods. However, for systems involving complicated

molecules, the generality of potential models is limited to those having cyclic coordinates.

This restriction permits one to introduce the "averaged" density matrix in order to reduce

the dimensionality of integrations to be evaluated. Otherwise, standard methods are not

applicable for carrying out the required 9- or ll-dimensional integrations.

Finally, the Monte Carlo algorithm has been tested for line shape calculations.

Based on numerical tests, one concludes that this method can be used, at least to evaluate

9--dimensional integrations. As a result, one can utilize sophisticated potential models for

systems consisting of one asymmetric-top (or symmetric-top) molecule and one linear

molecule and obtain converged results for the far-wing line shapes and corresponding

absorption coefficients.

It has been shown in our previous study _ that the far-wing shape is very sensitive to

the angular gradients of the potential and, more specifically, to the detailed energy contour
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area at which large angular gradients of the potential are exhibited while the potential

values are relatively small or even negative. We expect that such features would not fully

manifest their effects on other physical measurements (e.g., the second virial coefficient,

the Lorentzian halfwidth and shift, etc.). This implies that the far-wing line shape can

serve as a sensitive diagnostic tool to obtain detailed and desirable information about the

interaction between two molecules. Given the fact that we can treat all potential models

for H20 - N 2 and we have full confidence that the results obtained are the "true" values

corresponding to these models, this role becomes even more valuable.

In the present work, we have tested some other models, such as a site-site model

whose expression is given by

iEa jEb

where the individual interactions between force centers take the Lennard-Jones form and

eij and crij are corresponding parameters. It turns out that with the same parameters used

in Lorentzian halfwidth and shift calculations, 8'7 the magnitudes of the calculated far-wing

line shape are too large and predict much more absorption when compared with the

measurements. By analyzing contour profiles of this model in detail, we find that its

angular gradients are very large at some areas where the potential values are relatively

small. This results from the Lennard-Jones form. It is well known that around r = er, the

value of the Lennard-Jones potential is close to zero, but its gradient in r is large. For

each components Vii , the same feature appears around rij = _rij. On the other hand,

although the distance r between two molecules is assumed to be fixed during the transition

process, all the distances between force center i and center j, i.e., rij vary as the two

molecules change their orientations. It happens that for some special positions of the

system, one or more of these rij are close to aij. Then, small rotations of the orientations

could result in significant changes in the values of Vij. AS a result, V(r, fa, fib) could

possess very large angular gradients and relatively small values near these special areas.
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As mentioned above, most of significant contributions to the magnitudes of the

far-wing line shape come from positions of the system such that around their energy

contour area, large angular gradients of the potential are exhibited while the potential

values are relatively small or even negative. The latter requirement can be easily

understood since the system would have few statistical chances to occupy positions having

large positive potential values. Therefore, it is not surprising that th_ potential model

constructed from the Lennard-Jones form produces too large magnitudes of the far-wing

line shape. The failure to predict the absorption indicates that the actual interaction is not

well represented by this model. However, we note that this does not devalue its

applicability for predicting different physical quantities which are insensitive to these

features, but sensitive to other ones. The profile of the interaction potential between two

molecules has a complicated nature which cannot be ascertained from only a single physical

measurement; one has to combine all diagnostic means available to map its complexity.

Although the work performed in the present paper is for H20 - N2, similar studies

can be carried out for other systems, such as H20 - CO r However, one challenge still

remains, i.e., how to deal with the H_O - H20 system for which one needs to evaluate

ll--dimensionai integrations if the potential considered does not contain any cyclic

coordinates.

In general, to extend the Monte Carlo computations to higher dimensions may be

possible. It will require more random selections to achieve converged results, but not 100

times more (a typical amount obtained by selecting 10 points along each additional

dimension) as standard methods do. However, there is another difficulty faced by the

Monte Carlo computations resulting from the integrand itself, i.e., that its distributions

become even more nonuniform. In fact, the factor I <_l_/_-b_l _>12 for H20 - H_O

distributes nonuniformly over 6 variables in comparison with the H20 - N 2 case where it

distributes nonuniformly only over 4 variables.

In addition, it has been shown in our previous studies 1'2 that it is essential to
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separate the sensitive variables of the integrand from insensitive ones since this separation

enables one to choose different resolutions in evaluating multidimensional integrations

using standard methods. The same conclusion is also true in the Monte Carlo

computations. In this case, the separation enables one to tailor the important sampling

and to reduce the variance dramatically. This separation is achieved by representing the

final orientations of the system labeled by r/in terms of the body-fixed frames in_tead of

the space-fixed frame. The body-fixed frames introduced here are those attached to the

two molecules at their initial orientational positions. More explicitly, for the linear

molecule, one chooses 0_, _o_, 0_1 , and _o_ instead of 0_, _o_, 011, and _; for the

symmetric-top or asymmetric-top molecule, one chooses ¢_c,,_, 7_, a_ _, _c c,_l, and

7c _n_ instead of a_, _, 7_, a n, _n, and 7_. However, it is necessary to carry out some

algebra when one calculates potential values with these variables since the expressions for

potentials are always given in terms of the space-fixed frame; thus, one has to rotate the

body-fixed frame back to the space fixed one. The more complex the molecule, the more

work is required.

Based on the arguments given above, it is obvious that more random selections and

more CPU time will be required to achieve converged line shapes for H20 - H20.

However, without numerical tests, it is difficult to assert whether the Monte Carlo method

is applicable for this system. We plan to pursue this problem in further research.
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LIST OF FIGURES

Fig. 1. The absolute square of the density matrix of N 2 given in the coordinate

representation calculated at three temperatures for Jinx = 80: the solid line at T =

296 K; the dashed - dotted line at T = 338 K; and the dotted line at T = 430 K.

Fig. 2. The two-dimensional distributions of the density matrix of H20 over the Euler

angles a and 7 obtained at T = 296 K for Jmax = 23. The value of the Euler angle B

is fixed and there are four plots presented here corresponding to 3 = 0, 20, 40, and

60 degrees, respectively.

Fig. 3. The two-dimensional distribution of the density matrix of H20 over the two

sensitive angles _ and u [= (a + 7)/2] obtained at T - 296 K for Jmax = 23. This

distribution results from averaging the density matrix of H20 over the one

insensitive angle v [= (a - 7)/2]. The range of u is [0, 2r] and there is a symmetry

respect to the axis u = T. The plot presented here covers 0 _( u _( I" only.

Fig. 4. The same as Figure 3, except T = 338 K.

Fig. 5. The same as Figure 3, except T = 430 K. In comparison with that used in Figures

3 and 4, the lowest scale is reduced to avoid meaningless structures which result

from numerical errors. This indicates a general trend that for higher temperatures

more states with higher J values have to be added in the calculations.

The N2-broadened far-wing line shape of H20 (in units of cm'l atm'l) as a

function of frequency to (in units of cm -1) for T = 296 K calculated with two

different numbers of random selections in the Monte Carlo calculation; they are

obtained from 9.2 x 106 and 3.2 x 106 random evaluations of the integrand and are

represented by the solid and dashed curves, respectively.

The N2-broadened far-wing line shape of H20 (in units of cm "1arm "1) as a

function of frequency to (in units of cm "1) for T = 296 K, 338 K, and 430 K; these

are represented by the solid, dashed, and dotted lines, respectively.

The calculated N2-broadened absorption coefficient (in units of cm 2 molecule -I

Fig. 6.

Fir. 7.

Fig. S.
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arm-1) at T = 206 K in the 300 - 1100 cm "1 spectral region is represented by a.

comparison, the experimental values are denoted by +.

Fig. 9. The same as Fig. 8, except that T = 430 K.

For
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